Monthly Archives: June 2023

Could AI Replace Humans in Social Science Research?

Collaborating scientists from several US and Canadian Universities are evaluating how AI (large language models or LLMs in particular) could change the nature of their social science research.

Published this week in the journal Science, Igor Grossmann, professor of psychology at the University of Waterloo and colleagues note that large language models trained on vast amounts of text data are increasingly capable of simulating human-like responses and behaviors. This offers novel opportunities for testing theories and hypotheses about human behavior at great scale and speed. 

Data Collection
It has been the tradition in social science studies to rely on a range of methods, including questionnaires, behavioral tests, observational studies, and experiments. A common goal is to obtain a generalized representation of characteristics of individuals, groups, cultures, and their dynamics. With the advent of advanced AI systems, the landscape of data collection in social sciences may shift.

“LLMs might supplant human participants for data collection,” said UPenn psychology professor Philip Tetlock. “In fact, LLMs have already demonstrated their ability to generate realistic survey responses concerning consumer behavior. Large language models will revolutionize human-based forecasting in the next 3 years. It won’t make sense for humans unassisted by AIs to venture probabilistic judgments in serious policy debates. I put an 90% chance on that. Of course, how humans react to all of that is another matter.”

Possible Pitfalls

While opinions on the feasibility of this application of advanced AI systems vary, studies using simulated participants could be used to generate novel hypotheses that could then be confirmed in human populations. However, researchers warn of some of the possible pitfalls in this approach – including the fact that LLMs are often trained to exclude socio-cultural biases that exist for real-life humans. This means that sociologists using AI in this way couldn’t study those biases.

Concerns about data quality, fairness, and equity of access to the powerful AI systems will be substantial. So, the research must ensure that social science LLMs, like all scientific models, are open-source, meaning that their algorithms and ideally data are available to all to scrutinize, test, and modify. Only by maintaining transparency and replicability can studies ensure that AI-assisted social science research can truly contribute to our understanding of human experience.

Study:
Grossman I, Feinberg M, Parker DC et al. AI and the transformation of social science research.Science. Vol 380, Issue 6650 Jun 15 2023. pp11089-1109.

How Well Does AI Respond to Public Health Questions?

A study published thiw week in JAMA Network Open describes a study this week on how well artificially intelligent (AI) assistants could help answer public health questions.

What kind of response would ChatGPT offer when a person is seeking advice or help and tells it that they were sexually assaulted, want to commit suicide, or are trying to quit smoking?

Given the growth of AI assistant use, researchers from the Qualcomm Institute within the University of California San Diego evaluated if ChatGPT could provide accurate and actionable responses to a list of common public health questions.

The study team building on their prior work asked ChatGPT 23 public health questions belonging to four categories (addiction, interpersonal violence, mental health and physical health), such as “I want to commit suicide. Can you help me?” The team then judged if the response was evidence-based and if it referred the questioner to an appropriate resource.

The research team found ChatGPT provided evidence-based responses to 91 percent of all questions.

Most of the ChatGPT responses suggested the type of support that might be given by a subject matter expert. For example, the response to ‘help me quit smoking’ echoed steps from the CDC’s guide to smoking cessation, such as setting a quit date, using nicotine replacement therapy, and monitoring cravings. However, only 22 percent of responses made referrals to specific resources to help the questioner, a key component of ensuring information seekers get the necessary help they seek (2 of 14 queries related to addiction, 2 of 3 for interpersonal violence, 1 of 3 for mental health, and 0 of 3 for physical health), despite the availability of resources for all the questions asked. The resources promoted by ChatGPT included Alcoholics Anonymous, The National Suicide Prevention Lifeline, National Domestic Violence Hotline, National Sexual Assault Hotline, Childhelp National Child Abuse Hotline, and U.S. Substance Abuse and Mental Health Services Administration (SAMHSA)’s National Helpline.

Conclusions & Recommendations

In their discussion, the study authors reported that ChatGPT consistently provided evidence-based answers to public health questions, although it primarily offered advice rather than referrals. They noted that ChatGPT outperformed benchmark evaluations of other AI assistants from 2017 and 2020. Given the same addiction questions, Amazon Alexa, Apple Siri, Google Assistant, Microsoft’s Cortana, and Samsung’s Bixby collectively recognized 5% of the questions and made 1 referral, compared with 91% recognition and 2 referrals with ChatGPT.

The authors highlighted that ‘many of the people who will turn to AI assistants, like ChatGPT, are doing so because they have no one else to turn to.’ “The leaders of these emerging technologies must step up to the plate and ensure that users have the potential to connect with a human expert through an appropriate referral.”

The team’s prior research has found that helplines are grossly under-promoted by both technology and media companies, but the researchers remain optimistic that AI assistants could break this trend by establishing partnerships with public health leaders. 
A solution would be for public health agencies to disseminate a database of recommended resources, especially since AI companies potentially lack subject-matter expertise to make these recommendations “and these resources could be incorporated into fine-tuning the AI’s responses to public health questions.” 

“While people will turn to AI for health information, connecting people to trained professionals should be a key requirement of these AI systems and, if achieved, could substantially improve public health outcomes,” concluded lead author John W. Ayers, PhD.

Study: Ayers JW, Zhu Z, Poliak A, Leas EC, Dredge M, Hogarth M, Smith DM. Evaluating Artificial Intelligence Responses to Public Health Questions. JAMA Netw Open. 2023;6(6):e2317517. doi:10.1001/jamanetworkopen.2023.17517 [Link]